
 
03 Investigation of the Code 
 

This Materials Made Smarter Outreach Demonstration of How Computer Vision and 

Machine Learning can be used to Recognise Different Materials to Make Recycling 

Easier has been developed by Dr Robert Gibbs with Professor Cinzia Giannetti of 

Swansea University [ ↵ ] for Materials Made Smarter [ ↵ ], based upon the NVIDIA 

DLI "Getting Started with AI on Jetson Nano” course [ ↵ ]. 

 

This guide looks in detail through the code that makes the project work. An 

accompanying walkthrough video is available at Discover Materials by scanning the 

QR code or at  

https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/ 

 

The video forms part of the section  

03 Machine Learning and Neural Networks 

 

A playlist of all 4 videos is at 

https://www.youtube.com/playlist?list=PLyl3ubsSP6pUkBdTephBtqL7UfIFfGQ_Z  

 

 

Also available on the Discover Materials website are a glossary of the highlighted 

technical terms, an electronic version of the printed booklet and further 

information about the code, the equipment and progressively more detailed project 

documentation. 

 

 

 

https://www.swansea.ac.uk/science-and-engineering/
https://www.madesmarter.uk/made-smarter-innovation/research-centres/materials-made-smarter-research-centre/
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-RX-02+V2
https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/
https://www.youtube.com/playlist?list=PLyl3ubsSP6pUkBdTephBtqL7UfIFfGQ_Z


It is assumed that you have the system up and running according to the guide 

01 Getting the System Up and Running available on the website. 

 
 

In this guide we're going to look through the code that makes this system work.  

 

 
 

First go to Kernel>Restart Kernel and Clear All Outputs… to stop the code from 

running and click on Restart when it appears. 

 

We'll run each of the cells individually as we step through the code. You can execute 

each cell individually and move onto the next cell by pressing shift -return. 



data > MMSC_BCCC.ipynb 

 

 

 

Bottle, Can or Coffee Cup ?! 

Machine-Learning Computer-Vision Recognition Outreach 
Project for the Materials Made Smarter Centre 
This project has been developed by the Materials Made Smarter Centre at Swansea University in 
collaboration with the Sustain Manufacturing Research Hub and Discover Materials to demonstrate 
how Computer Vision and Machine Learning can be used to recognise different objects to help with 
the sorting of materials for recycling. 

Further information and documentation about this project can be found at 
https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/ 

 

The Project Equipment, a portable monitor and two combined Seeed reComputer J1010 units hosting 
the NVIDIA Jetson Nano Jetpak project code 

The platform this project is built on is the Seeed Studio reComputer J1010 NVIDIA Jetson Nano 2GB 
Platform with the Arm Cortex A57 CPU and NVIDIA Maxwell GPU and it has been developed by Dr R. 
Gibbs and Prof. C. Giannetti based upon the NVIDIA DLI "Getting Started with AI on Jetson Nano” 
course which can be found in the ../classification directory 
Professor C. Giannetti would like to acknowledge the support of the EPSRC (EP/V061798/1) in this 
Materials Made Smarter Project. 

https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/


Launch Camera 
This cell opens access to the Logitech C270 webcam attached to the USB3 port on reComputer 1. 
The jetcam library is contained within the nvidia_dli_docker environment. 

In [ ]: 

The first cell of the code launches the jetcam.usb_camera library to support the 

Logitec C270 camera that this code is designed to work with.  

  

## Launch Camera ########################################################################## 

# Check device number !ls -ltrh 

/dev/video* from jetcam.usb_camera 

import USBCamera 

# Logitech C270 webcam 
camera = USBCamera(width=224, height=224, capture_device=0) # confirm the capture_device number 

camera.running = True 
print("camera started") 

########################################################################################### 



 

Define Machine-Learning Task 
The task will be a Classification rather than a Regression Machine-Learning task. Classifying what the 
camera sees as either a bottle, a can or a coffee cup. There are three Datasets A, B or C. Dataset A 
contains 50 images each of the example props for the project. Datasets B and C can be used for other 
examples of training for new images. The images captured for training are stored in, for example, 
./images/BCCC_A/Bottle/ etc. 

In [ ]: 

    datasets[name] = ImageClassificationDataset('../data/images/'  

                     + TASK + '_' + name, CATEGORIES, TRANSFORMS) 

 
print("{} task with {} categories defined".format(TASK, CATEGORIES)) 

# Set up the data directory location if not there already 
DATA_DIR = '/nvdli-nano/data/images/'  

!mkdir -p {DATA_DIR} 

###########################################################################################  

We define the machine learning task with categories, bottle, can and coffee_cup, 

and three possible data sets; A, B and C, so there's lots of flexibility with adding 

new data to the system.  

 

The transforms convert the image from the camera into the 224 by 224 array that 

the machine learning model needs as its inputs.  

 

The dataset for each of the categories, and the images directory (which are already 

present on the system) are created.   

## Define Machine Learning Task ########################################################### 

import torchvision.transforms as transforms from 
dataset import ImageClassificationDataset 

TASK = 'BCCC' 

CATEGORIES = ['Bottle', 'Can', 'Coffee_Cup'] 

DATASETS = ['A', 'B', 'C'] 

TRANSFORMS = transforms.Compose([ 
    transforms.ColorJitter(0.2, 0.2, 0.2, 0.2),          
    transforms.Resize((224, 224)),        
    transforms.ToTensor(), 
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) 

]) 

 

datasets = {}  

for name in DATASETS: 



Create Widgets used for Data Collection 
Creates the widgets that display the dataset and categories being collected, the image from the 
camera and the capture button which stores an image 

In [ ]:  ## Create Data Collection Widget ######################################################### 

import ipywidgets 

import traitlets 
from IPython.display import displayfrom 
from jetcam.utils import bgr8_to_jpeg 

# initialize active dataset 
dataset = datasets[DATASETS[0]] 

# unobserve all callbacks from camera in case we are running this cell for second time 

camera.unobserve_all() 

# create image from camera  

camera_widget = ipywidgets.Image() 
traitlets.dlink((camera, 'value'),(camera_widget, 'value'), transform=bgr8_to_jpeg) 

# create widgets 
dataset_widget = ipywidgets.Dropdown(options=DATASETS, description='Dataset:') 

category_widget = ipywidgets.Dropdown(options=dataset.categories, description='Category:') 
count_widget = ipywidgets.IntText(description='# Images:') 

capture_widget = ipywidgets.Button(description='Capture Image') 

# update exisitng count of images at initialization  
count_widget.value = dataset.get_count(category_widget.value) 

# sets the active dataset 

def set_dataset(change): 
    global dataset      

    dataset = datasets[change['new']] 
    count_widget.value = dataset.get_count(category_widget.value) 
dataset_widget.observe(set_dataset, names='value') 

# update counts when we select a new category def 
update_counts(change): 
    count_widget.value = dataset.get_count(change['new']) 
category_widget.observe(update_counts, names='value') 

# save image for category and update counts 
def save(c): 
    dataset.save_entry(camera.value, category_widget.value) 

    count_widget.value = dataset.get_count(category_widget.value) 

capture_widget.on_click(save) 

data_collection_widget = ipywidgets.VBox([capture_widget, 

                                          dataset_widget, 
                                          category_widget, 

                                          count_widget]) 

# output 
print("camera_widget, data_collection_widget created") 

######################################################################################## 



The next part of the code creates widgets for use in the data collection.  

 

We need to import the widgets library, the traitlets library and the display and 

image translation libraries.  

 

We use the data set that's selected.  

 

We check that the camera is only being run once so there are no conflicts. And then 

we create a camera widget that brings the camera input in from the library and 

transforms it into a jpeg image for display on the screen. This works in real -time 

and displays the real-time feed from the camera.  

 

We create a drop down menu of all the data sets available (A, B, C) and a drop down 

menu of all the categories available (Bottle, Can or Coffee_Cup). 

 

A text object that displays the count of the number of images present in each of 

the folders and a button that tells the system to capture a new image and store it 

in the relevant folder are defined. 

 

The count widget counts the number of images in each folder is updated whenever 

the dataset and category menus are changed. The number is also updated whenever 

there is a change to the count of images in the folder whenever the capture button 

is pressed,  

 

When the capture button is pressed the jpeg version of the image from the camera 

is stored it in the relevant folder of the correct category in the correct data set.  

 

All the elements are grouped together for display using ipywidgets vertical and 

horizontal boxes. 

 

  



Load the pre-trained RESNET 18 Neural Network Model 
There are several large Neural Network models which have been pre-trained on millions of general 
images to develop general understanding of what the camera is looking at. Through transfer learning, 
these pretrained models are used as the starting point from which new training is performed to 
specialise the recognition to a few specific categories. This permits successful models to be built 
using fewer training images than would be required if trying to learn a situation from scratch. It takes a 
short time to load in the model that is being used. Three other models are also available for 
experiementation. The models are stored in the nvidia_dli_docker environment. 

In [ ]: 

device = torch.device('cuda') # this makes use of the Graphical Processing Unit built  

                                into the Jetson Nano. 

# RESNET 18 
model = torchvision.models.resnet18(pretrained=True)  
model.fc = torch.nn.Linear(512, len(dataset.categories)) 

# ALEXNET 
# model = torchvision.models.alexnet(pretrained=True) 
# model.classifier[-1] = torch.nn.Linear(4096, len(dataset.categories)) 

# SQUEEZENET  
# model = torchvision.models.squeezenet1_1(pretrained=True) 
# model.classifier[1] = torch.nn.Conv2d(512, len(dataset.categories), kernel_size=1) 
# model.num_classes = len(dataset.categories) 

# RESNET 34 
# model = torchvision.models.resnet34(pretrained=True)  
# model.fc = torch.nn.Linear(512, len(dataset.categories)) 
     
model = model.to(device) 

model_save_button = ipywidgets.Button(description='save model')  

model_load_button = ipywidgets.Button(description='load model') 
model_path_widget = ipywidgets.Text(description='model path',  

                                    value='/nvdli-nano/data/BCCC_model.pth') 

def load_model(c): 
    model.load_state_dict(torch.load(model_path_widget.value))  
model_load_button.on_click(load_model) 

 
def save_model(c): 
    torch.save(model.state_dict(), model_path_widget.value) 
model_save_button.on_click(save_model) 
 
model_widget = ipywidgets.HBox([model_path_widget,model_load_button,model_save_button]) 

# output 
print("model_widget created") 

########################################################################################## 
 

  

########################################################################################### 

import torch 

import torchvision 



Here we load the pretrained ResNet 18 model. This is a model that has been trained 

on millions of different objects to be able to pull out the features for a number of 

different objects, and we are using this as a transfer of learning so that we don't 

need to learn from scratch what an object looks like.  

 

There are other models that you can investigate if you remark out, ResNet 18 and 

replace with the defining statements for Alexnet or Squeezenet or ResNet 34, 

which is an even bigger 34 layered model 

 

We start with ResNet 18 because it's the smallest of the four models and runs best 

in the limited memory on the Jetson Nano 2 GB system. But you can experiment 

yourself if you wish. 

 

We create load, save buttons to pull in a new final layer for the model, if we have 

one saved. With the mechanism behind those buttons for each of the different 

models. 

 

This cell takes a while to execute because ResNet is a large model to load into 

memory, but eventually the cell will finish executing.  

  



Create State and Prediction Widgets 
Switch between Training and Prediction states and launch the live real-time state. In the real-time 
state the system displays a live view of what the camera sees, but waits until the 'recognise' button is 
pressed before performing a prediction/inference operation with the trained model. 

In [ ]:  ########################################################################################## 

import threading 

import time 
from utils import preprocess 
import torch.nn.functional as F 

state_widget = ipywidgets.ToggleButtons(options=['Train', 'Predict'], description='State',  

                                        value='Train') 
prediction_widget = ipywidgets.Text(description='as') # this widget is placed after  
                                                      the 'Recognise' widget so that it 
                                                      reads Recognise as … 
score_widgets = []  
for category in dataset.categories: 
    score_widget = ipywidgets.FloatSlider(min=0.0, max=1.0, description=category,  
                                          orientation='vertical')      
    score_widgets.append(score_widget) 
     
recognise_widget = ipywidgets.Button(description='Recognise') 

# run prediction on current image 
def recognise(c): 
    image = camera.value 

    preprocessed = preprocess(image)      

    output = model(preprocessed) 
    output = F.softmax(output, dim=1).detach().cpu().numpy().flatten()       
    category_index = output.argmax() 
    prediction_widget.value = dataset.categories[category_index]      
    for i, score in enumerate(list(output)):          
        score_widgets[i].value = score 

# during the live state the camera feed thread is run in real-time but and the 'Recognise'  

# button is polled inference is only performed by the recognise function when the button  
# is pressed  

def live(state_widget, model, camera, prediction_widget, score_widget): 

    global dataset 

    while state_widget.value == 'Predict':          

        recognise_widget.on_click(recognise)  
                    

def start_live(change): 

    if change['new'] == 'Predict': 
        execute_thread = threading.Thread(target=live, args=(state_widget, model, camera,  
                                          prediction_widget, score_widget)) 
        execute_thread.start() 
state_widget.observe(start_live, names='value') 

predict_widget = ipywidgets.VBox([ipywidgets.HBox(score_widgets), 
                                  ipywidgets.HBox([recognise_widget,prediction_widget])]) 

 

# outputs 

print("state_widget and predict_widget created") 

 

######################################################################################### 

 

 



Now we're going to create the real-time, live-threading, interface that changes 

between the training state and the prediction state and controls the change 

between them. 

 

Rather than running in real-time, constantly trying to recognise what the camera 

sees, we have defined a Recognise button, so it only performs a prediction if the 

Recognise button is pressed. This prevents overloading the limited memory of the 

Jetson Nano 2GB system with uncontrolled data collection.  

 

If the Recognise button is pressed, then the image is taken from the camera.  

 

It is processed by the transformations to make it the right size and format for 

the model to understand. Then the output is the prediction of the model, which 

calls model and we give it the processed image as an input with this single line  

 
output = model(preprocessed) 

 

It produces three probabilities of how confident the model is that the image is of 

a can, a bottle or a coffee cup, providing percentage values of the likelihood. 

 

Those 3 percentage values are then mapped through a softmax function, which 

effectively takes the most likely of those three values  and returns the most 

probable. 

 

The category index then becomes the most likely of those three categories, the 

one it has greatest confidence in and the prediction which it then displays the name 

of the category that matches the category index. 

 

This live state will provide the live feed of the camera constantly and wait for the 

Recognise button to be pressed before making a prediction.  

 

The start live groups together the real time threading of the model and the camera, 

the prediction widget and the score widgets. 

 

The predict widget then is a grouping of the score widgets, which are the three 

probabilities, and the recognize and prediction widgets. It organizes the 

arrangement of this part of the final display.  

 

  



Training and Evaluation 
Define the training widgets, after new data is collected the final layer of the model must be retrained 
to learn the new images. This cell may take several seconds to execute. The default number of epochs 
for training the model is 10. The first epoch takes a while to begin as the images are loaded into 
memmory, but then training proceeds relatively quickly, counting epochs down. Once training is 
complete the system automatically switches to the 'Predict' state and waits for the 'recognise' button 
to be pressed. 

In [ ]:  ########################################################################################### 

BATCH_SIZE = 8 

optimizer = torch.optim.Adam(model.parameters()) 
# optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9) 

epochs_widget = ipywidgets.IntText(description='epochs', value=10) 
eval_button = ipywidgets.Button(description='evaluate') 
train_button = ipywidgets.Button(description='train') 

loss_widget = ipywidgets.FloatText(description='loss') 
accuracy_widget = ipywidgets.FloatText(description='accuracy') 
progress_widget = ipywidgets.FloatProgress(min=0.0, max=1.0, description='progress') 

def train_eval(is_training): 
    global BATCH_SIZE, LEARNING_RATE, MOMENTUM, model, dataset, optimizer,  

           eval_button, train_button, accuracy_widget, loss_widge 
        
try: 
        train_loader = torch.utils.data.DataLoader(               
            dataset, 
            batch_size=BATCH_SIZE,              
            shuffle=True 
        ) 

        state_widget.value = 'Train'            

        train_button.disabled = True 

        eval_button.disabled = True            
        time.sleep(1) 

        if is_training: 
            model = model.train()          
        else: 
            model = model.eval()          
        while epochs_widget.value > 0: 
            i = 0 

            sum_loss = 0.0 
            error_count = 0.0 

            for images, labels in iter(train_loader): 
                # send data to device                  

                images = images.to(device)                  

                labels = labels.to(device) 

                if is_training: 
                    # zero gradients of parameters                      

                    optimizer.zero_grad() 

                # execute model to get outputs                  
                outputs = model(images) 

                # compute loss 
                loss = F.cross_entropy(outputs, labels) 



 
                if is_training: 
                    # run backpropogation to accumulate gradients                      
                    loss.backward() 

                    # step optimizer to adjust parameters                      
                    optimizer.step() 

                # increment progress 
                error_count += len(torch.nonzero(outputs.argmax(1) - labels).flatten())                  
                count = len(labels.flatten()) 
                i += count 
                sum_loss += float(loss)                  

                progress_widget.value = i / len(dataset)                  

                loss_widget.value = sum_loss / i 
                accuracy_widget.value = 1.0 - error_count / i 
                                              

            if is_training: 
                epochs_widget.value = epochs_widget.value – 1 

            else: 
                break          

    except e:           

        pass 
    model = model.eval() 

    train_button.disabled = False        
    eval_button.disabled = False      
    state_widget.value = 'Predict' 
     
train_button.on_click(lambda c: train_eval(is_training=True))  
eval_button.on_click(lambda c: train_eval(is_training=False)) 

training_widget = ipywidgets.VBox([ipywidgets.HBox([train_button,eval_button]),                                     

                                                    epochs_widget,                                     
                                                    progress_widget,                                     

                                                    accuracy_widget])  

# loss_widget not included 

# output 
print("training configured and training_widget created") 

####################################################################################### 

 

Training and evaluation is the process where the model is trained on all of the data 

stored in the image's folder or evaluated when a saved model is loaded into the 

final layer. 

 

The number of epochs, is defaulted to 10, but can be changed. The evaluation button 

is used when loading a model in.  The train button is used when training a model from 

scratch. The loss widget accuracy widget and progress widget are all values that 

can be interrogated to understand how well the training performed.  

 



In this particular demonstration we only display the accuracy and the progress 

widget, the loss widget isn't displayed, but you can choose to display it if you want 

to. 

 

The training function contains the mechanics of passing through each image in the 

training dataset folders and determining the loss function = the measure of the 

error in predicting that image compared to the actual  classification of image. The 

back propagation process then in improves the weights and biases of the final layer 

of the resulting model to predict for the three categories defined.  

 

The widget are again then grouped to make the arrangement on the final display. 

Define Project Controls 
Groups and arranges all the created 

widgets into the display for the project 

In [ ]: 

Finally, we group all of our individual widget sub-groups widgets together into one 

collection called the project controls.  

Launch the Project Controls 
 

     
 

In [ ]: 

 

  

## define project controls ################################################################ 
constructed from: 
# camera_widget, data_collection_widget 
# modelsave_widget 
# state_widget, predict_widget and score_widgets 
# training_widget 
project_controls = ipywidgets.VBox([state_widget, 
                                    ipywidgets.HBox([camera_widget,predict_widget]),                                      

                                    ipywidgets.HBox([data_collection_widget,training_widget]),                                 

                                    model_widget]) 

display(project_controls) 



Finally, we can display all the project controls and we can see all of those elements 

that were discussed arranged within the project controls interface with the live 

camera feed, the data sets, bottles, number of images in each half the categories.  

 

 
 

Pressing the train button which executes the training procedure as described in 

the guide 02 How to Use the Project Controls to Identify Objects available on 

the website. 

 

On this occasion we already have the model saved so we can load that in by pressing 

load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Before the model can be used to predict anything, we have to load it in as the final 

layer of the ResNet model, so we press the evaluate button. This process takes 

approximately a minute but is faster than training from scratch. 

 

 
 

Once the model has loaded into the final layer the system switches to the predict 

mode. 

 



 
 

We can put in an object to be recognized, and we press the Recognise button, it will 

create a prediction of that object, the can.  

 

 
 

the Bottle 

 

 

 



  
 

and the Coffee Cup 

 

Loading a saved model is a lot faster than training from scratch, as in guide 02 How 

to Use the Project Controls to Identify Objects available on the website. 

 

In the guide 04 Improving the Performance for New Objects (available on the 

website) we'll investigate how you can improve the performance on recognising 

objects it has never seen before.  

 

In the meantime have fun with the system on the three objects it's been trained 

to recognise. 

 

See you there. 


