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This Materials Made Smarter Outreach Demonstration of How Computer Vision and
Machine Learning can be used to Recognise Different Materials fo Make Recycling
Easier has been developed by Dr Robert Gibbs with Professor Cinzia Giannetti of
Swansea University [ ¢ ] for Materials Made Smarter [ ¢ ], based upon the NVIDIA
DLI "Getting Started with AT on Jetson Nano" course [ ¢ 1.

This guide describes how to use the project controls fo identify objects after

setting it up. An accompanying walkthrough video is available at Discover Materials

by scanning the QR code or at
https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/

The video forms part of the section

A playlist of all 4 videos is at
https://www.youtube.com/playlist?list=PLyl3ubsSP6pUkBdTephBtqL7UfIFfGQ_Z

Also available on the Discover Materials website are a of the

, an electronic version of the printed and further
information about the code, the equipment and progressively more detailed project
documentation.

E-d - DEEP visit DISCOVER
BT Engineering and ™ P
N Physical Sciences LEARNING

SPrifysgol .?Jbgrtav\_fte Research Council NVIDIA.  INSTITUTE

wansea University : "

———— developed by Dr R. Gibbs and Prof. C. Giannetti for Materials Made Smarter, hﬂ'ps://d|5cover'mu1'emals.co>uk

Y Gyfadran Gwyddoniaeth a Pheirianneg based upon the NVIDIA DLI ' . .
Faculty of Science and Engineering “Getting Started with AT on Jetson Nano” course. and learn more about what's happening in the

Materials and Manufacturing Research Institute €6, would like to acknowledge the support of the EPSRC (EP/V061798/1). world of materials science!


https://www.swansea.ac.uk/science-and-engineering/
https://www.madesmarter.uk/made-smarter-innovation/research-centres/materials-made-smarter-research-centre/
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-RX-02+V2
https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/
https://www.youtube.com/playlist?list=PLyl3ubsSP6pUkBdTephBtqL7UfIFfGQ_Z

It is assumed that you have the system up and running according to the guide
available on the website.
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There is a live view of objects as we put them inside the photo box.

The system has two states, the train state and the predict state. At the moment
we're in the training state.
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There are three possible data sets, A,B and C. The categories in each dataset are

bottle, can or coffee cup.

The BCCC_A dataset contains 50 images of one example object from each of the

categories, at different orientations

Thumbnails of all the BCCC_A training images are presented at the end of this

guide.

These are the training images that the system comes with and these images are
stored in the folder images under a sub folder BCCC_A and subfolders Bottle, Can

and Coffee_Cup.
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If you wanted fo train for your own objects, you could select dataset B or C, and it
would store that data in the relevant folder so you do not disturb the original
fraining data set that the system comes with.

In this guide we will use the existing BCCC_A training dataset to train the model.
The guide (available on the
website) discussed the addition of new training images and new training datasets.

There are adjustable settings for the training of the model. The default setting

for the number of epochs, the number of times it runs through the training data,

is 10 we'll leave it at that for now but you can experiment with how this
can be changed to affect the

The progress bar shows us the state of the progress of fraining, and the accuracy
reports how well the system is recognises the objects in it has been trained on.

There is a balance between 100% accuracy where it correctly recognises every
image it has seen before, or less than 100% accuracy, which enables it to have some
generality and maybe recognise images it hasn't seen before. You want to have an
accuracy above 90% in this situation



S aAman g | 4) 1658

yyyyyy

» Do ‘ '
¢ Materials How Computer Vision and
® aa 4 b ol Machine Learning can be used to
’ .
= 3 i - Recognise Different Materials to

SUStaIn Make Recycling Easier

Press train to train the model. The first time you press train, the first epoch takes
longer than the remaining 9 as it loads all the 150 images into memory. The training
process will take approximately 4.6 minutes and you can see the progress of each
epoch.

As described in the booklet (electronic version available on the website) the
process of training or learning takes a long time, but once the machine has learnt,
each of the objects from its training data set, it can then recognise them in real
time.

The system comes with an existing saved model, but if you wish to save your own
model, press the save model button. This will save the model under the filename and
location written in the model path box. You can give the model your own name if you
wish.
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Following training, the system moves to the predict state, and it's ready to

recognise objects now.

We still have our live feed from the camera in the photo box, if you put the provided
example Bottle, Can or Coffee Cup into the photo box and then press the Recognise

button, you can see that the system will recognized it.

The first time you press the Recognise button it fakes a little time to react as it
loads the new model data into memory, but every other recognition is nearly

instantaneous, providing recognition.
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Here the system has recognised that this object is a can, and it's recognized it
with 100% certainty that it is a can, not a bottle, not a coffee cup.
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The system has very quickly now recognized that the object is a the bottle from
its training data set
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The third type of object, the coffee cup, has been recognised with 100% certainty.

You can experiment with putting different examples of the objects in and seeing
what the system thinks they are.
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If, for example, we put in a different type of can and the system still recognises

it as a can, even though it's never seen this can before and it is even a different
colour to the previous can.



It has 92% confidence that it is a can 8% confidence that it might be a coffee cup,
but the important thing for is that it uses the most likely category
for its final recognition of an object.
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If we try the experiment again, with a bottle that it's never seen before the system
recognizes it as a bottle, and this time with 100% confidence, even though it has
never seen this bottle before it is not the bottle that it is that is in its training
data set. It has clearly found some features of bottles that it definitely identify
the as bottles compared to other things.

We can play with how the system works with different objects and see what the
system thinks they are.

In the guide (available on the
website) we'll investigate how you can improve the performance on recognising

objects it has never seen before.

In the meantime have fun with the system on the three objects it's been trained
to recognise.

See you there.
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