

01 Getting the System Up and Running

This Materials Made Smarter Outreach Demonstration of How Computer Vision and

Machine Learning can be used to Recognise Different Materials to Make Recycling

Easier has been developed by Dr Robert Gibbs with Professor Cinzia Giannetti of

Swansea University [↵] for Materials Made Smarter [↵], based upon the NVIDIA

DLI "Getting Started with AI on Jetson Nano” course [↵].

This guide describes how to get the system running after powering it up. An

accompanying walkthrough video is available at Discover Materials by scanning the

QR code or at

https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/

The video forms part of the section

02 Working with Limited Resources

A playlist of all 4 videos is at

https://www.youtube.com/playlist?list=PLyl3ubsSP6pUkBdTephBtqL7UfIFfGQ_Z

Also available on the Discover Materials website are a glossary of the highlighted

technical terms, an electronic version of the printed booklet and further

information about the code, the equipment and progressively more detailed project

documentation.

https://www.swansea.ac.uk/science-and-engineering/
https://www.madesmarter.uk/made-smarter-innovation/research-centres/materials-made-smarter-research-centre/
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-RX-02+V2
https://discovermaterials.co.uk/resource/bottle-can-or-coffee-cup/
https://www.youtube.com/playlist?list=PLyl3ubsSP6pUkBdTephBtqL7UfIFfGQ_Z

It is assumed that you have set up the equipment hardware according to the guide

00 Setting up the Demonstration Hardware available on the website.

As we power on both units together, we have the video connected to the second of

the Seeed Studios reComputers. These are based on the Jetson Nano 2 GB platform

from NVIDIA and they are running Ubuntu 18.

We use one of the computers to drive the video display and the web interface, and

the other computer, with its own GPU, is providing the machine learning capability

and the code behind the models, provided by the NVIDIA DLI environment.

So we log into the system with the username jetson2 and the password jnano23

Neither of the computers are connected to the Internet and that should remain

the case so that the system doesn't break itself.

However, the two machines are communicating to each other over a private internal

network using the short ethernet cable.

At the initial interface there are only two applications that we need to run for this

demonstration.

First we launch the terminal by double clicking on the icon.

This is the terminal for jetson2@reComputer2 on the second unit.

We need to begin communication with the connected first unit that runs the machine

learning environment.

We do this with the command;

jetson2@reComputer2:~ ssh jetson1@192.168.0.1

and password jnano23

This is the IP address for the private network between the two machines. jetson2

has an IP address 192.168.0.2

You don't need to type in this command because it is already in the history, so you

can just press the up arrow to recover the command stored in history.

It won't display the password, but if you press return we are now logged in as the

jetson1 user on reComputer1, which is the first unit.

This is the unit that will be running the python code and the docker environment

for the machine learning.

Again, the following commands are stored in the history, so you just need to press

the up and down arrow, or you can type them in. But if we press up once we get

jetson1@reComputer1:~ exit

because that was the last command we used to leave the system on shutting down.

We press up again and we get;

jetson1@reComputer1:~ ./MMSC_BCCC_start.sh

this is a shell script that starts the Machine Learning environment on reComputer1.

the password is again jnano23

The docker environment that launches is for the machine learning code that is

written in Python. A discussion of the code used is provided in the guide

03 Investigation of the Code available on the website.

The docker environment is provided as part of the NVIDIA Deep Learning

Institute’s course, and it starts a Jupiter lab server at the IP address

http://192.168.0.1:8888

with a password for access

 dlinano

We leave the terminal running so reComputer1 maintains the docker environment,

and we now access that docker environment through the Jupiter lab Server.

We double click the chromium web browser which launches in full screen.

The shortcut to the Jupyter lab Server will take us to the login page with the

password

 dlinano

The Jupyter environment is running on reComputer1 with reComputer2 providing

the graphics display and web interface to the headless python environment. When

using computing platforms with limited resources it is common to have multiple units

and dedicate one task to each unit. The GPU on the 2GB Jetson Nano platform has

enough memory and compute power to drive the graphical display or the machine

learning task, but not both. By pairing multiple units together both tasks can be

completed at the same time. The key is managing the communication and timing

between the different components and communicating only the limited information

that is necessary. The Jupyter Server on reComputer1 sends only small text based

html descriptions of how to draw the graphics, which are quick to send, with the

web browser on reComputer2 doing the hard work of interpreting those instructions

and drawing the interface. The large amount of data which the webcam generates ,

and the hard work of the machine learning processing , is handled by reComputer1,

so that the reComputer2 can concentrate on just the creation of the visual display.

The files contained in the docker are those from the DLI course and are renewed

every time the docker starts.

Our project is found in data, which is an environment that is stored outside of the

docker and remains in place even when the system is shutdown. Further details of

this architecture can be understood from the detailed technical files found in this

project’s github arxive, accessible from the website.

Inside data is another folder, images, which contains BCCC_A, which contains 50

examples of each of the categories of objects. These are our training data set.

There are named folders with example images of the bottle, the can and the

coffee_cup.

This is the training data set that is already stored on the machine.

It is stored in a folder BCCC_A. In the guide 04 Improving the Performance for

New Objects (available on the website) it is possible to see how we can create a B

or a C dataset, if we want to experiment with alternative images of new examples

of the objects.

In general, the training data set is a picture of each object at many different

orientations. Thumbnails of all the BCCC_A training images are presented at the

end of this guide.

The utils.py code and the dataset.py code are libraries that we need in the system.

The BCCC_banner is the image at the top of the code, Experimental_setup is the

photograph of the equipment.

The code itself is MMSC_BCCC.ipynb . Double-click to open.

A detailed description of the code is provided in the guide the guide

03 Investigating the Code available on the website.

To get the system up and running and be able to operate the identification, go to

Kernel>Restart Kernel and Run All Cells… and click on Restart when it appears.

It takes approximately 50 seconds for all the code to run and the system to get up

and running.

The system provides this interface, which has a live view of our object inside the

photographic cube. A guide on how to use the interface to identify objects is

provided in the guide 02 How to Use the Project Controls to Identify Objects

available on the website.

See you there.

./data/images/BCCC_A/Bottle/

./data/images/BCCC_A/Can/

./data/images/BCCC_A/Coffee_Cup

